Recitation 7. April 27

Focus: algebraic \mathcal{G} geometric multiplicity, Jordan normal form, complex eigenvalues \mathcal{G} eigenvectors, symmetric matrices

Given an $n \times n$ matrix A and an eigenvalue λ, then its:

$$
\begin{aligned}
& \text { algebraic multiplicity }=\text { multiplicity of } \lambda \text { as a root of the characteristic polynomial } \\
& \text { geometric multiplicity }=\text { dimension of } N(A-\lambda I)
\end{aligned}
$$

In general, we have the following inequality for all eigenvalues of A :

$$
\text { algebraic multiplicity } \geq \text { geometric multiplicity }
$$

If the inequality above is an equality for all eigenvalues λ of A, then \mathbb{R}^{n} has a basis consisting only of eigenvectors, hence we can diagonalize the matrix A :

$$
A=V D V^{-1}
$$

where V is the matrix whose columns are eigenvectors, and D is the diagonal matrix with the eigenvalues on the diagonal. Even if the matrix A is not diagonalizable, we can always write it as:

$$
A=V\left[\begin{array}{c|c|c|c}
J_{1} & 0 & \cdots & 0 \\
\hline 0 & J_{2} & \cdots & 0 \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline 0 & 0 & \cdots & J_{t}
\end{array}\right] V^{-1}
$$

where each J_{i} is a Jordan block of the form:

$$
\left[\begin{array}{cccccc}
\lambda & 1 & 0 & 0 & \ldots & 0 \\
0 & \lambda & 1 & 0 & \ldots & 0 \\
0 & 0 & \lambda & 1 & \ldots & 0 \\
0 & 0 & 0 & \lambda & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \lambda
\end{array}\right]
$$

As the eigenvalues are roots of the characteristic polynomial, quite often it turns out that they are complex numbers:

$$
z=a+b i
$$

where $a, b \in \mathbb{R}$ and i is a symbol that satisfies the relation $i^{2}=-1$. Recall the following notions:

$$
\begin{aligned}
& \hline \text { complex conjugate }: \overline{a+b i}=a-b i \\
& \hline \text { absolute value }:|a+b i|=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

You may go back and forth between Cartesian coordinates a, b and polar coordinates r, θ :

$$
\left\{\begin{array} { l }
{ r = \sqrt { a ^ { 2 } + b ^ { 2 } } } \\
{ \theta = \operatorname { a r c c o s } (\frac { a } { \sqrt { a ^ { 2 } + b ^ { 2 } } }) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a=r \cos \theta \\
b=r \sin \theta
\end{array}\right.\right.
$$

So with this in mind, we get the formula:

$$
a+b i=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

Symmetric $n \times n$ matrices are always diagonalizable with real eigenvalues and orthonormal eigenvectors:

$$
S=Q D Q^{-1}=Q D Q^{T}
$$

1. Which of the following matrices are diagonalizable? What are the algebraic and geometric multiplicities of the eigenvalues?

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

Solution:

2. Consider the matrix:

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

and calculate $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots$.

Solution:

3. Consider the matrix:

$$
X=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Find its eigenvalues and eigenvectors. How many eigenvalues are complex? Are there complex conjugate pairs?

Solution:

4. Consider the matrix:

$$
Y=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

- Can you find an easy eigenvalue without computing the characteristic polynomial?
- Compute all eigenvectors for the above easy eigenvalue
- Can you use this to determine the remaining eigenvector and eigenvalue?

Solution:

